Developmental alteration of endocannabinoid retrograde signaling in the hippocampus.

نویسندگان

  • Ping Jun Zhu
  • David M Lovinger
چکیده

Endocannabinoids are lipid derivatives that mediate paracrine and juxtacrine signaling between cells. In the hippocampal CA1 region, a retrograde endocannabinoid signal suppresses GABA release by acting on presynaptic cannabinoid receptor-1 (CB1) and can be functionally manifested as depolarization-induced suppression of inhibition (DSI). In the present study, whole cell patch-clamp recordings in hippocampal slices were made to examine DSI in rats from P7-P21. Robust DSI develops in rat hippocampus at postnatal ages greater than two weeks, but only modest DSI is observed in P7-9 rat. DSI in neonatal rats can be enhanced by activation of group I metabotropic glutamate receptors (mGluRs) or muscarinic acetylcholine receptors in those neonatal rats. The DSI is also enhanced by sustained low-frequency (1 Hz) stimulation (5 min). This stimulus-enhanced DSI was prevented in the presence of 6-methyl-2-(phenylethynyl)-pyridine (10 microM), a group I mGluR antagonist. WIN55212-2, a synthetic CB1 agonist, produced a similar level of inhibition of GABAergic synaptic transmission at different postnatal time points. Therefore postsynaptic mechanisms appear to be mainly responsible for developmental changes in DSI, although presynaptic mechanisms cannot be ruled out entirely. We have also obtained evidence that tonic endocannabinoid release suppresses GABAergic transmission in the mature but not the neonatal hippocampus. The differential DSI magnitude at different stages of maturation could alter synaptic plasticity and learning and memory during hippocampal development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus.

Endocannabinoids function as retrograde messengers and modulate synaptic transmission through presynaptic cannabinoid CB1 receptors. The magnitude and time course of endocannabinoid signaling are thought to depend on the balance between the production and degradation of endocannabinoids. The major endocannabinoid 2-arachidonoylglycerol (2-AG) is hydrolyzed by monoacylglycerol lipase (MGL), whic...

متن کامل

Long-Term Plasticity of Endocannabinoid Signaling Induced by Developmental Febrile Seizures

Febrile (fever-induced) seizures are the most common form of childhood seizures, affecting 3%-5% of infants and young children. Here we show that the activity-dependent, retrograde inhibition of GABA release by endogenous cannabinoids is persistently enhanced in the rat hippocampus following a single episode of experimental prolonged febrile seizures during early postnatal development. The pote...

متن کامل

Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling

Introduction: Carbon nanotubes (CNTs) have shown enormous potential in neuroscience. Nerve growth factor (NGF)-CNTs complex promotes the neuronal growth, however, the underlying mechanism(s) have remained elusive. Based on the interplay between NGF and the endocannabinoid system, involvement of the neuroprotective endocannabinoid, 2-arachidonoyl glycerol (2-AG), was investigated in the mechanis...

متن کامل

Endocannabinoid System and TRPV1 Receptors in the Dorsal Hippocampus of the Rats Modulate Anxiety-like Behaviors

Objective(s) Fatty acid is amide hydrolase which reduce endogenous anandamide. Transient receptor potential vanilloid-1 (TRPV1) channels have been reported to have a role in the modulation of anxiety-like behaviors in rodents. In the present study, the effects of either endocannabinoid system or TRPV1 channels and their possible interaction on anxiety-like behaviors of the rats were explored. ...

متن کامل

Distinct endocannabinoid control of GABA release at perisomatic and dendritic synapses in the hippocampus.

Endocannabinoid-mediated retrograde synaptic signaling is a key regulator of GABA release at synapses formed on the perisomatic region of pyramidal cells by basket cells that coexpress the cannabinoid type 1 receptor (CB(1)R) and cholecystokinin (CCK). However, CB(1)R and CCK-positive GABAergic terminals are present on pyramidal cell dendrites as well, but the principles of endocannabinoid cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 103 2  شماره 

صفحات  -

تاریخ انتشار 2010